
Dense LU factorization and its error analysis

Laura Grigori

INRIA and LJLL, UPMC

February 2016

Plan

Basis of floating point arithmetic and stability analysis
Notation, results, proofs taken from [N.J.Higham, 2002]

Direct methods of factorization
LU factorization

Error analysis of LU factorization - main results

Block LU factorization

2 of 33

Plan

Basis of floating point arithmetic and stability analysis
Notation, results, proofs taken from [N.J.Higham, 2002]

Direct methods of factorization

3 of 33

Norms and other notations

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

|aij |2

‖A‖2 = σmax(A)

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |

Inequalities |x | ≤ |y | and |A| ≤ |B| hold componentwise.

4 of 33

Floating point arithmetic

� The machine precision or unit roundoff is u
� The maximum relative error for a given rounding procedure
� u is of order 10−8 in single precision, 2−53 ≈ 10−16 in double precision
� Another definition: the smallest number that added to one gives a result

different from one

� The evaluation involving basic arithmetic operations +,−, ∗, / in floating
point satisfies

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u

5 of 33

Relative error

� Given a real number x and its approximation x̂ , the absolute error and
the relative errors are

Eabs(x̂) = |x − x̂ |, Erel(x̂) =
|x − x̂ |
|x |

(1)

� The relative error is scale independent

� Some examples, outline the difference with correct significant digits

x = 1.00000, x̂ = 1.00499, Erel(x̂) = 4.99× 10−3

x = 9.00000, x̂ = 8.99899, Erel(x̂) = 1.12× 10−4

� When x is a vector, the componentwise relative error is

max
i

|xi − x̂i |
|xi |

6 of 33

Backward and Forward errors

� Consider y = f (x) a scalar function of a real scalar variable and ŷ its
approximation.

� Ideally we would like the forward error Erel(ŷ) ≈ u

� Instead we focus on the backward error, “For what set of data we have
solved the problem?”
that is we look for min |∆x | such that ŷ = f (x + ∆x)

7 of 33

Condition number

Assume f is twice continuously differentiable, then

ŷ − y = f (x + ∆x)− f (x) = f ′(x)∆x +
f ”(x + τ∆x)

2!
(∆x)2, τ ∈ (0, 1)

ŷ − y

y
=

(
xf ′(x)

f (x)

)
∆x

x
+ O((∆x)2)

The condition number is

c(x) =

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣
Rule of thumb
When consistently defined, we have

forward error ≤ condition number× backward error

8 of 33

Preliminaries

Lemma (Lemma 3.1 in [N.J.Higham, 2002])
If |δi | ≤ u and ρi = ±1 for i = 1 : n, and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + Θn, |Θn| ≤

nu

1− nu
= γn

Other notations

γ̃n =
cnu

1− cnu

9 of 33

Inner product in floating point arithmetic

Consider computing sn = xT y , with an evaluation from left to right. We
denote different errors as 1 + δi ≡ 1± δ

ŝ1 = fl(x1y1) = x1y1(1± δ)

ŝ2 = fl(ŝ1 + x2y2) = (ŝ1 + x2y2(1± δ))(1± δ)

= x1y1(1± δ)2 + x2y2(1± δ)2

...

ŝn = x1y1(1± δ)n + x2y2(1± δ)n + x3y3(1± δ)n−1 + . . .+ xnyn(1± δ)2

After applying the previous lemma, we obtain

ŝn = x1y1(1 + Θn) + x2y2(1 + Θ′n) + . . .+ xnyn(1 + Θ2)

10 of 33

Inner product in FP arithmetic - error bounds

We obtain the following backward and forward errors

ŝn = x1y1(1 + Θn) + x2y2(1 + Θ′n) + . . .+ xnyn(1 + Θ2)

fl(xT y) = (x + ∆x)T y = xT (y + ∆y), |∆x | ≤ γn|x |, |∆y | ≤ γn|y |,

|xT y − fl(xT y)| ≤ γn

n∑
i=1

|xiyi | = γn|x |T |y |

� High relative accuracy is obtained when computing xT x

� No guarantee of high accuracy when |xT y | << |x |T |y |

11 of 33

Plan

Basis of floating point arithmetic and stability analysis

Direct methods of factorization
LU factorization
Block LU factorization

12 of 33

Algebra of the LU factorization

LU factorization
Compute the factorization PA = LU

Example
Given the matrix

A =

3 1 3
6 7 3
9 12 3

Let

M1 =

 1
−2 1
−3 1

 , M1A =

3 1 3
0 5 −3
0 9 −6

13 of 33

Algebra of the LU factorization

� In general

A(k+1) = MkA(k) :=

Ik−1

1
−mk+1,k 1

. . .
. . .

−mn,k 1

A(k),where

Mk = I −mkeT
k , M−1k = I + mkeT

k

where ek is the k-th unit vector, eT
i mk = 0,∀i ≤ k

� The factorization can be written as

Mn−1 . . .M1A = A(n) = U

14 of 33

Algebra of the LU factorization

� We obtain

A = M−11 . . .M−1n−1U

= (I + m1eT
1) . . . (I + mn−1eT

n−1)U

=

(
I +

n−1∑
i=1

mie
T
i

)
U

=

1

m21 1
...

...
. . .

mn1 mn2 . . . 1

U = LU

15 of 33

The need for pivoting

� For stability, avoid division by small diagonal elements

� For example

A =

0 3 3
3 1 3
6 2 3

 (2)

has an LU factorization if we permute the rows of matrix A

PA =

6 2 3
0 3 3
3 1 3

 =

 1
1

0.5 1

 ·
6 2 3

3 3
1.5

 (3)

� Partial pivoting allows to bound the multipliers mik ≤ 1 and hence |L| ≤ 1

16 of 33

Existence of the LU factorization

Theorem
Given a full rank matrix A of size m × n, m ≥ n, the matrix A can be
decomposed as A = PLU where P is a permutation matrix of size m ×m, L
is a unit lower triangular matrix of size m × n and U is a nonsingular upper
triangular matrix of size n × n.

Proof: simpler proof for the square case. Since A is full rank, there is a
permutation P1 such that P1a11 is nonzero. Write the factorization as

P1A =

(
a11 A12

A21 A22

)
=

(
1 0

A21/a11 I

)(
a11 A12

0 A22 − a−111 A21A12

)
,

where S = A22 − a−111 A21A12.
Since det(A) 6= 0, then det(S) 6= 0. Continue the proof by induction on S .

17 of 33

Solving Ax = b by using Gaussian elimination

Composed of 4 steps

1. Factor A = PLU, (2/3)n3) flops

2. Compute PTb to solve LUx = PTb

3. Forward substitution: solve Ly = PT ∗ b, n2 flops

4. Backward substitution: solve Ux = y , n2 flops

18 of 33

Algorithm to compute the LU factorization

� Algorithm for computing the in place LU factorization of a matrix of size
n × n.

� #flops = 2n3/3

1: for k = 1:n-1 do
2: Let aik be the element of maximum magnitude in A(k : n, k)
3: Permute row i and row k
4: A(k + 1 : n, k) = A(k + 1 : n, k)/akk
5: for i = k + 1 : n do
6: for j = k + 1 : n do
7: aij = aij − aikakj
8: end for
9: end for

10: end for

19 of 33

Algorithm to compute the LU factorization

� Left looking approach, pivoting ignored, A of size m × n

� #flops = n2m − n3/3

1: for k = 1:n do
2: for j = k:n do
3: ukj = akj −

∑k−1
i=1 lkiuij

4: end for
5: for i = k+1:m do
6: lik = (aik −

∑k−1
j=1 lijujk)/ukk

7: end for
8: end for

20 of 33

Error analysis of the LU factorization

Given the first k − 1 columns of L and k − 1 rows of U were computed, we
have

akj = lk1u1j + . . .+ lk,k−1uk−1,j + ukj , j = k : n

aik = li1u1k + . . .+ likukk , i = k + 1 : m

The computed elements of L̂ and Û satisfy:

∣∣∣∣∣akj −
k−1∑
i=1

l̂ki ûij − ûkj

∣∣∣∣∣ ≤ γk

k∑
i=1

|l̂ki ||ûij |, j ≥ k,∣∣∣∣∣∣aik −
k∑

j=1

l̂ij ûjk

∣∣∣∣∣∣ ≤ γk

k∑
j=1

|l̂ij ||ûjk |, i > k.

21 of 33

Error analysis of the LU factorization (continued)

Theorem (Theorem 9.3 in [N.J.Higham, 2002])
Let A ∈ Rm×n,m ≥ n and let L̂ ∈ Rm×n and Û ∈ Rn×n be its computed LU
factors obtained by Gaussian elimination (suppose there was no failure
during GE). Then,

L̂Û = A + ∆A, |∆A| ≤ γn|L̂||Û|.

Theorem (Theorem 9.4 in [N.J.Higham, 2002])
Let A ∈ Rm×n,m ≥ n and let x̂ be the computed solution to Ax = b
obtained by using the computed LU factors of A obtained by Gaussian
elimination. Then

(A + ∆A)x̂ = b, |∆A| ≤ γ3n|L̂||Û|.

22 of 33

Error analysis of Ax = b

Theorem (Theorem 9.4 in [N.J.Higham, 2002] continued)

(A + ∆A)x̂ = b, |∆A| ≤ γ3n|L̂||Û|.

Proof.
We have the following:

L̂Û = A + ∆A, |∆A| ≤ γn|L̂||Û|,
(L̂ + ∆L)ŷ = b, |∆L| ≤ γn|L̂|,

(Û + ∆U)x̂ = ŷ , |∆U| ≤ γn|Û|.

Thus

b = (L̂ + ∆L)(Û + ∆U)x̂ = (A + ∆A1 + L̂∆U + ∆LÛ + ∆L∆U)x̂

= (A + ∆A)x̂ ,where

|∆A| ≤ (3γn + γ2
n)|L̂||Û| ≤ γ3n|L̂||Û|.

23 of 33

Wilkinson’s backward error stability result

Growth factor gW defined as

gW =
maxi,j,k |akij |
maxi,j |aij |

Note that
|uij | = |aiij | ≤ gW max

i,j
|aij |

Theorem (Wilkinson’s backward error stability result, see also
[N.J.Higham, 2002] for more details)
Let A ∈ Rn×n and let x̂ be the computed solution of Ax = b obtained by
using GEPP. Then

(A + ∆A)x̂ = b, ‖∆A‖∞ ≤ n2γ3ngW (n)‖A‖∞.

24 of 33

The growth factor

� The LU factorization is backward stable if the growth factor is small
(grows linearly with n).

� For partial pivoting, the growth factor g(n) ≤ 2n−1, and this bound is
attainable.

� In practice it is on the order of n2/3 – n1/2

Exponential growth factor for Wilkinson matrix

A = diag(±1)

1 0 0 · · · 0 1
−1 1 0 ... 0 1

−1 −1 1
. . .

...
...

...
...

. . .
. . . 0 1

−1 −1 · · · −1 1 1
−1 −1 · · · −1 −1 1

25 of 33

Experimental results for special matrices

Several errror bounds for GEPP, the normwise backward error η and the
componentwise backward error w (r = b − Ax).

η =
||r ||1

||A||1 ||x ||1 + ||b||1
,

w = max
i

|ri |
(|A| |x |+ |b|)i

.

matrix cond(A,2) gW ||L||1 cond(U,1)
||PA−LU||F
||A||F

η wb

hadamard 1.0E+0 4.1E+3 4.1E+3 5.3E+5 0.0E+0 3.3E-16 4.6E-15
randsvd 6.7E+7 4.7E+0 9.9E+2 1.4E+10 5.6E-15 3.4E-16 2.0E-15
chebvand 3.8E+19 2.0E+2 2.2E+3 4.8E+22 5.1E-14 3.3E-17 2.6E-16
frank 1.7E+20 1.0E+0 2.0E+0 1.9E+30 2.2E-18 4.9E-27 1.2E-23
hilb 8.0E+21 1.0E+0 3.1E+3 2.2E+22 2.2E-16 5.5E-19 2.0E-17

26 of 33

Block formulation of the LU factorization

Partitioning of matrix A of size n × n

A =

[
A11 A12

A21 A22

]
where A11 is of size b × b, A21 is of size (m − b)× b, A12 is of size
b × (n − b) and A22 is of size (m − b)× (n − b).

Block LU algebra
The first iteration computes the factorization:

PT
1 A =

[
L11

L21 In−b

]
·
[

Ib
A1

]
·
[

U11 U12

In−b

]
The algorithm continues recursively on the trailing matrix A1.

27 of 33

Block LU factorization - the algorithm

1. Compute the LU factorization with partial pivoting of the first block
column

P1

(
A11

A21

)
=

(
L11

L21

)
U11

2. Pivot by applying the permutation matrix PT
1 on the entire matrix,

Ā = PT
1 A.

3. Solve the triangular system

L11U12 = Ā12

4. Update the trailing matrix,

A1 = Ā22 − L21U12

5. Compute recursively the block LU factorization of A1.

28 of 33

LU Factorization as in ScaLAPACK

LU factorization on a P = Pr x Pc grid of
processors
For ib = 1 to n-1 step b
A(ib) = A(ib : n, ib : n)

1. Compute panel factorization
� find pivot in each column, swap rows

2. Apply all row permutations
� broadcast pivot information along the rows
� swap rows at left and right

3. Compute block row of U
� broadcast right diagonal block of L of

current panel

4. Update trailing matrix
� broadcast right block column of L
� broadcast down block row of U

29 of 33

Cost of LU Factorization in ScaLAPACK

LU factorization on a P = Pr x Pc grid of
processors
For ib = 1 to n-1 step b
A(ib) = A(ib : n, ib : n)

1. Compute panel factorization
� #messages = O(n log2 Pr)

2. Apply all row permutations
� #messages = O(n/b(log2 Pr + log2 Pc))

3. Compute block row of U
� #messages = O(n/b log2 Pc)

4. Update trailing matrix
� #messages = O(n/b(log2 Pr + log2 Pc)

30 of 33

Cost of parallel block LU

Consider that we have a
√

P ×
√

P grid, block size b

γ ·
(

2/3n3

P
+

n2b√
P

)
+ β · n2 log P√

P
+

α ·
(

1.5n log P +
3.5n

b
log P

)
.

31 of 33

Acknowledgement

� Stability analysis results presented from [N.J.Higham, 2002]

� Some of the examples taken from [Golub and Van Loan, 1996]

32 of 33

References (1)

Golub, G. H. and Van Loan, C. F. (1996).
Matrix Computations (3rd Ed.).
Johns Hopkins University Press, Baltimore, MD, USA.

N.J.Higham (2002).
Accuracy and Stability of Numerical Algorithms.
SIAM, second edition.

Schreiber, R. and Loan, C. V. (1989).
A storage efficient WY representation for products of Householder
transformations.
SIAM J. Sci. Stat. Comput., 10(1):53–57.

33 of 33

	Basis of floating point arithmetic and stability analysis
	Notation, results, proofs taken from higham02:accurandstabilofnumeralgor

	Direct methods of factorization
	LU factorization
	Block LU factorization

