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Norms and other notations

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

|aij |2

‖A‖2 = σmax(A)

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |

Inequalities |x | ≤ |y | and |A| ≤ |B| hold componentwise.
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Floating point arithmetic

� The machine precision or unit roundoff is u
� The maximum relative error for a given rounding procedure
� u is of order 10−8 in single precision, 2−53 ≈ 10−16 in double precision
� Another definition: the smallest number that added to one gives a result

different from one

� The evaluation involving basic arithmetic operations +,−, ∗, / in floating
point satisfies

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u
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Relative error

� Given a real number x and its approximation x̂ , the absolute error and
the relative errors are

Eabs(x̂) = |x − x̂ |, Erel(x̂) =
|x − x̂ |
|x |

(1)

� The relative error is scale independent

� Some examples, outline the difference with correct significant digits

x = 1.00000, x̂ = 1.00499, Erel(x̂) = 4.99× 10−3

x = 9.00000, x̂ = 8.99899, Erel(x̂) = 1.12× 10−4

� When x is a vector, the componentwise relative error is

max
i

|xi − x̂i |
|xi |
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Backward and Forward errors

� Consider y = f (x) a scalar function of a real scalar variable and ŷ its
approximation.

� Ideally we would like the forward error Erel(ŷ) ≈ u

� Instead we focus on the backward error, “For what set of data we have
solved the problem?”
that is we look for min |∆x | such that ŷ = f (x + ∆x)
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Condition number

Assume f is twice continuously differentiable, then

ŷ − y = f (x + ∆x)− f (x) = f ′(x)∆x +
f ”(x + τ∆x)

2!
(∆x)2, τ ∈ (0, 1)

ŷ − y

y
=

(
xf ′(x)

f (x)

)
∆x

x
+ O((∆x)2)

The condition number is

c(x) =

∣∣∣∣xf ′(x)

f (x)

∣∣∣∣
Rule of thumb
When consistently defined, we have

forward error ≤ condition number× backward error

8 of 33



Preliminaries

Lemma (Lemma 3.1 in [N.J.Higham, 2002])
If |δi | ≤ u and ρi = ±1 for i = 1 : n, and nu < 1, then

n∏
i=1

(1 + δi )
ρi = 1 + Θn, |Θn| ≤

nu

1− nu
= γn

Other notations

γ̃n =
cnu

1− cnu
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Inner product in floating point arithmetic

Consider computing sn = xT y , with an evaluation from left to right. We
denote different errors as 1 + δi ≡ 1± δ

ŝ1 = fl(x1y1) = x1y1(1± δ)

ŝ2 = fl(ŝ1 + x2y2) = (ŝ1 + x2y2(1± δ))(1± δ)

= x1y1(1± δ)2 + x2y2(1± δ)2

...

ŝn = x1y1(1± δ)n + x2y2(1± δ)n + x3y3(1± δ)n−1 + . . .+ xnyn(1± δ)2

After applying the previous lemma, we obtain

ŝn = x1y1(1 + Θn) + x2y2(1 + Θ′n) + . . .+ xnyn(1 + Θ2)
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Inner product in FP arithmetic - error bounds

We obtain the following backward and forward errors

ŝn = x1y1(1 + Θn) + x2y2(1 + Θ′n) + . . .+ xnyn(1 + Θ2)

fl(xT y) = (x + ∆x)T y = xT (y + ∆y), |∆x | ≤ γn|x |, |∆y | ≤ γn|y |,

|xT y − fl(xT y)| ≤ γn

n∑
i=1

|xiyi | = γn|x |T |y |

� High relative accuracy is obtained when computing xT x

� No guarantee of high accuracy when |xT y | << |x |T |y |
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Algebra of the LU factorization

LU factorization
Compute the factorization PA = LU

Example
Given the matrix

A =

3 1 3
6 7 3
9 12 3


Let

M1 =

 1
−2 1
−3 1

 , M1A =

3 1 3
0 5 −3
0 9 −6
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Algebra of the LU factorization

� In general

A(k+1) = MkA(k) :=


Ik−1

1
−mk+1,k 1

. . .
. . .

−mn,k 1

A(k),where

Mk = I −mkeT
k , M−1k = I + mkeT

k

where ek is the k-th unit vector, eT
i mk = 0,∀i ≤ k

� The factorization can be written as

Mn−1 . . .M1A = A(n) = U
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Algebra of the LU factorization

� We obtain

A = M−11 . . .M−1n−1U

= (I + m1eT
1 ) . . . (I + mn−1eT

n−1)U

=

(
I +

n−1∑
i=1

mie
T
i

)
U

=


1

m21 1
...

...
. . .

mn1 mn2 . . . 1

U = LU
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The need for pivoting

� For stability, avoid division by small diagonal elements

� For example

A =

0 3 3
3 1 3
6 2 3

 (2)

has an LU factorization if we permute the rows of matrix A

PA =

6 2 3
0 3 3
3 1 3

 =

 1
1

0.5 1

 ·
6 2 3

3 3
1.5

 (3)

� Partial pivoting allows to bound the multipliers mik ≤ 1 and hence |L| ≤ 1
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Existence of the LU factorization

Theorem
Given a full rank matrix A of size m × n, m ≥ n, the matrix A can be
decomposed as A = PLU where P is a permutation matrix of size m ×m, L
is a unit lower triangular matrix of size m × n and U is a nonsingular upper
triangular matrix of size n × n.

Proof: simpler proof for the square case. Since A is full rank, there is a
permutation P1 such that P1a11 is nonzero. Write the factorization as

P1A =

(
a11 A12

A21 A22

)
=

(
1 0

A21/a11 I

)(
a11 A12

0 A22 − a−111 A21A12

)
,

where S = A22 − a−111 A21A12.
Since det(A) 6= 0, then det(S) 6= 0. Continue the proof by induction on S .
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Solving Ax = b by using Gaussian elimination

Composed of 4 steps

1. Factor A = PLU, (2/3)n3) flops

2. Compute PTb to solve LUx = PTb

3. Forward substitution: solve Ly = PT ∗ b, n2 flops

4. Backward substitution: solve Ux = y , n2 flops
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Algorithm to compute the LU factorization

� Algorithm for computing the in place LU factorization of a matrix of size
n × n.

� #flops = 2n3/3

1: for k = 1:n-1 do
2: Let aik be the element of maximum magnitude in A(k : n, k)
3: Permute row i and row k
4: A(k + 1 : n, k) = A(k + 1 : n, k)/akk
5: for i = k + 1 : n do
6: for j = k + 1 : n do
7: aij = aij − aikakj
8: end for
9: end for

10: end for
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Algorithm to compute the LU factorization

� Left looking approach, pivoting ignored, A of size m × n

� #flops = n2m − n3/3

1: for k = 1:n do
2: for j = k:n do
3: ukj = akj −

∑k−1
i=1 lkiuij

4: end for
5: for i = k+1:m do
6: lik = (aik −

∑k−1
j=1 lijujk)/ukk

7: end for
8: end for
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Error analysis of the LU factorization

Given the first k − 1 columns of L and k − 1 rows of U were computed, we
have

akj = lk1u1j + . . .+ lk,k−1uk−1,j + ukj , j = k : n

aik = li1u1k + . . .+ likukk , i = k + 1 : m

The computed elements of L̂ and Û satisfy:

∣∣∣∣∣akj −
k−1∑
i=1

l̂ki ûij − ûkj

∣∣∣∣∣ ≤ γk

k∑
i=1

|l̂ki ||ûij |, j ≥ k,∣∣∣∣∣∣aik −
k∑

j=1

l̂ij ûjk

∣∣∣∣∣∣ ≤ γk

k∑
j=1

|l̂ij ||ûjk |, i > k.
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Error analysis of the LU factorization (continued)

Theorem (Theorem 9.3 in [N.J.Higham, 2002])
Let A ∈ Rm×n,m ≥ n and let L̂ ∈ Rm×n and Û ∈ Rn×n be its computed LU
factors obtained by Gaussian elimination (suppose there was no failure
during GE). Then,

L̂Û = A + ∆A, |∆A| ≤ γn|L̂||Û|.

Theorem (Theorem 9.4 in [N.J.Higham, 2002])
Let A ∈ Rm×n,m ≥ n and let x̂ be the computed solution to Ax = b
obtained by using the computed LU factors of A obtained by Gaussian
elimination. Then

(A + ∆A)x̂ = b, |∆A| ≤ γ3n|L̂||Û|.
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Error analysis of Ax = b

Theorem (Theorem 9.4 in [N.J.Higham, 2002] continued)

(A + ∆A)x̂ = b, |∆A| ≤ γ3n|L̂||Û|.

Proof.
We have the following:

L̂Û = A + ∆A, |∆A| ≤ γn|L̂||Û|,
(L̂ + ∆L)ŷ = b, |∆L| ≤ γn|L̂|,

(Û + ∆U)x̂ = ŷ , |∆U| ≤ γn|Û|.

Thus

b = (L̂ + ∆L)(Û + ∆U)x̂ = (A + ∆A1 + L̂∆U + ∆LÛ + ∆L∆U)x̂

= (A + ∆A)x̂ ,where

|∆A| ≤ (3γn + γ2
n)|L̂||Û| ≤ γ3n|L̂||Û|.

23 of 33



Wilkinson’s backward error stability result

Growth factor gW defined as

gW =
maxi,j,k |akij |
maxi,j |aij |

Note that
|uij | = |aiij | ≤ gW max

i,j
|aij |

Theorem (Wilkinson’s backward error stability result, see also
[N.J.Higham, 2002] for more details)
Let A ∈ Rn×n and let x̂ be the computed solution of Ax = b obtained by
using GEPP. Then

(A + ∆A)x̂ = b, ‖∆A‖∞ ≤ n2γ3ngW (n)‖A‖∞.
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The growth factor

� The LU factorization is backward stable if the growth factor is small
(grows linearly with n).

� For partial pivoting, the growth factor g(n) ≤ 2n−1, and this bound is
attainable.

� In practice it is on the order of n2/3 – n1/2

Exponential growth factor for Wilkinson matrix

A = diag(±1)



1 0 0 · · · 0 1
−1 1 0 ... 0 1

−1 −1 1
. . .

...
...

...
...

. . .
. . . 0 1

−1 −1 · · · −1 1 1
−1 −1 · · · −1 −1 1
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Experimental results for special matrices

Several errror bounds for GEPP, the normwise backward error η and the
componentwise backward error w (r = b − Ax).

η =
||r ||1

||A||1 ||x ||1 + ||b||1
,

w = max
i

|ri |
(|A| |x |+ |b|)i

.

matrix cond(A,2) gW ||L||1 cond(U,1)
||PA−LU||F
||A||F

η wb

hadamard 1.0E+0 4.1E+3 4.1E+3 5.3E+5 0.0E+0 3.3E-16 4.6E-15
randsvd 6.7E+7 4.7E+0 9.9E+2 1.4E+10 5.6E-15 3.4E-16 2.0E-15
chebvand 3.8E+19 2.0E+2 2.2E+3 4.8E+22 5.1E-14 3.3E-17 2.6E-16
frank 1.7E+20 1.0E+0 2.0E+0 1.9E+30 2.2E-18 4.9E-27 1.2E-23
hilb 8.0E+21 1.0E+0 3.1E+3 2.2E+22 2.2E-16 5.5E-19 2.0E-17
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Block formulation of the LU factorization

Partitioning of matrix A of size n × n

A =

[
A11 A12

A21 A22

]
where A11 is of size b × b, A21 is of size (m − b)× b, A12 is of size
b × (n − b) and A22 is of size (m − b)× (n − b).

Block LU algebra
The first iteration computes the factorization:

PT
1 A =

[
L11

L21 In−b

]
·
[

Ib
A1

]
·
[

U11 U12

In−b

]
The algorithm continues recursively on the trailing matrix A1.
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Block LU factorization - the algorithm

1. Compute the LU factorization with partial pivoting of the first block
column

P1

(
A11

A21

)
=

(
L11

L21

)
U11

2. Pivot by applying the permutation matrix PT
1 on the entire matrix,

Ā = PT
1 A.

3. Solve the triangular system

L11U12 = Ā12

4. Update the trailing matrix,

A1 = Ā22 − L21U12

5. Compute recursively the block LU factorization of A1.
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LU Factorization as in ScaLAPACK

LU factorization on a P = Pr x Pc grid of
processors
For ib = 1 to n-1 step b
A(ib) = A(ib : n, ib : n)

1. Compute panel factorization
� find pivot in each column, swap rows

2. Apply all row permutations
� broadcast pivot information along the rows
� swap rows at left and right

3. Compute block row of U
� broadcast right diagonal block of L of

current panel

4. Update trailing matrix
� broadcast right block column of L
� broadcast down block row of U
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Cost of LU Factorization in ScaLAPACK

LU factorization on a P = Pr x Pc grid of
processors
For ib = 1 to n-1 step b
A(ib) = A(ib : n, ib : n)

1. Compute panel factorization
� #messages = O(n log2 Pr )

2. Apply all row permutations
� #messages = O(n/b(log2 Pr + log2 Pc))

3. Compute block row of U
� #messages = O(n/b log2 Pc)

4. Update trailing matrix
� #messages = O(n/b(log2 Pr + log2 Pc)
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Cost of parallel block LU

Consider that we have a
√

P ×
√

P grid, block size b

γ ·
(

2/3n3

P
+

n2b√
P

)
+ β · n2 log P√

P
+

α ·
(

1.5n log P +
3.5n

b
log P

)
.
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